
Parallelizing 1D Midpoint Displacement
Algorithm for Terrain Generation

Yadav Mayank Subhash#1, Prakash Tripathi#2, P.S.Rao#3
#Department of Applied Mathematics, Indian School of Mines,

Dhanbad, India

Abstract— 1D Midpoint Displacement Algorithm is one of the
most fundamental algorithms used for terrain generation in
the field of Computer Graphics. With the advent of Parallel
Computing and GPUs it is now possible to use the high
performance of multiple processors to increase the speed of
computation. We are proposing a parallel implementation of
1D Midpoint Displacement Algorithm for Terrain Generation
in this paper. The basic idea is to solve all the sub problems in
the sequential algorithm in parallel using GPUs.

Keywords— parallel, algorithm, terrain generation, GPU
computing, 2D midpoint displacement algorithm.

I. INTRODUCTION
1D Midpoint Displacement algorithm is one of the most

fundamental algorithms used for terrain generation in the
field of Computer Graphics. It is used widely by
programmers around the world because of its simplicity,
efficiency and the quality of result it produces. This
algorithm is recursively called till a result with desired
resolution or smoothness is not obtained. Now, this takes
high computation time when the smoothness expected is of
high quality. In order to tackle this problem, we need to use
the power of GPUs (Graphics Processing Units) that can
help in solving the sub problems in parallel resulting in
smaller computation time. We are going to describe the
sequential algorithm and then proceed towards its parallel
implementation.

II. SEQUENTIAL ALGORITHM

The 1D midpoint displacement algorithm [1] starts with
a line between two points. These two points are considered
to define the horizontal axis of the 2D final geometry. The
midpoint of the two initial points is displaced vertically be
a random amount. The two new line segments are then
divided in half and the midpoints of these segments are
displaced by a random amount. This process is repeated
until the desired level of detail is attained with the range of
the random displacement being reduced in each pass. For
example, if the random range was reduced by half for each
pass and the original range of the random displacement was
from -1.0 to 1.0, then the range for the second pass with
two midpoints would be from -0.5 to 0.5 and -0.25 to 0.25
for the third pass with four midpoints. The amount by
which the range of random numbers is reduced in each pass
is controlled. In fact the amount by which the range
decreases is one of the factors which controls the final
geometry.

The figure 1 below shows the three passes in midpoint
displacement algorithm.

Fig. 1 Example of 1D midpoint displacement algorithm

The brief overview of how midpoint displacement
algorithm works is given below:

 For Each Segment
Divide in half and average the middle point

Add a random value to the mid-point
Reduce the random range

 Repeat until segments are too small to continue.

The computation time for the sequential implementation
can be very high when high level of smoothness is needed.
In this age of high-end hardware, it is not favourable to
spend so much computation time to generate a terrain. It
can be observed that the process for determination of value
at middle point is always the same for any point. We will
use this property and process all the intermediate segments
(sub problems) in parallel which will drastically reduce the
time taken to generate the terrain.

We will now give the overview of NVidia GPUs and
then propose our parallel algorithm for 1D Midpoint
Displacement.

III. NVidia GPUs AND CUDA

A Graphics Processing Unit is a specialized electronic
circuit designed to rapidly manipulate and alter memory to
accelerate the processing speed for a task being executed
on it. Modern GPUs are very efficient at manipulating
computer graphics and their highly parallel structure makes
them more effective than general-purpose CPUs for
algorithms where the processing of large blocks of data is
done in parallel. NVidia has made a lot of progress in the
creation of GPUs and their API named CUDA is widely

Yadav Mayank Subhash et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 942-944

www.ijcsit.com 942

used for performing high end parallel computation on
NVidia GPUs. The CUDA API is very well documented
and easy to use. The user only needs to adhere to the syntax
and the API will manage the parallel computation on its
own.

A function definition preceded by the keyword
__global__ declares kernel, which is called on host and
executed on the GPU on each thread. We can divide the
whole problem space in blocks and grids as per our
convenience and CUDA runs the operation on these in
parallel. This accelerates the process rapidly and a lot of
processing time is saved.

In our application we will do computation in single
block with number of threads equal to number of points to
be obtained for terrain generation. This will be sufficient in
reducing the time needed to generate terrain using 1D
midpoint displacement algorithm.

IV. PARALLEL 1D MIDPOINT DISPLACEMENT

ALGORITHM
In the parallel algorithm, we will harness the power of

NVidia GPUs by using CUDA API. We will assume the
number of points on which the value is to be calculated to
be of the form 2N + 1. We will initialize the values for all
the elements at 0, and then we will start the process of
calculating the values at each points in subsequent passes.

The essential parts of our parallel algorithm are:

1) Locking mechanism: We are keeping a global integer
array named lockVal[] of the size equal to the number of
points to be calculated. Initially, all the values in the
lockVal[] is set to 0. When calling the function, we will set
isLocked[N/2] to 1. We will also initialize the values at two
extreme points to some constant (say 0).

2) Computation: When access to operation at a thread
(say threadIdx) is unlocked i.e. when lockVal[threadIdx] >
0, the value at the corresponding thread is calculated by
using midpoint displacement method. Then, the thread
unlocks the access for operation at threads (threadIdx –
threadIdx/2, threadIdx + threadIdx/2) by setting their
lockVal[] value to (lockVal[threadIdx]+1).

Using these two operations, we can complete our terrain
generation using parallel 1D midpoint displacement
algorithm using CUDA API.

We will use global integer array lockVal[] which will be
initialized to 0. The operation of midpoint displacement
algorithm will be performed only when the value at the
corresponding thread is greater than 0. The kernel code for
midpoint displacement algorithm is given alongside.

__global__ void midpoint_disp_parallel (double*

terrain_array, double displacement, double roughness) {
 int flag = true;
 while(flag) {
 if(lockVal[threadIdx] > 0) {

 int diff = N/pow(2,lockVal[threadIdx]);
 double rand_num = (rand()*10000)/10000.0;
 double change = (rand_num*2.0 -

1)*displacement;

 int left = threadIdx – diff;
 int right = threadIdx + diff;
 terrain_array[threadIdx] = (terrain_array[left] +

terrain_array[right])/2.0 + change;
 displacement = displacement*roughness;

 flag = false;
 lockVal[threadIdx + threadIdx/2] =

lockVal[threadIdx] + 1;
 lockVal[threadIdx – threadIdx/2] =

lockVal[threadIdx] + 1;
 }
 }
}

We will call this function with one block and number of

threads equals to total elements in the array named
terrain_array. The function will be called using two
parameters namely displacement and roughness.
Depending on these two values different terrains will be
generated. The values obtained in the terrain_array can be
fed in terrain rendering function which will display the 2D
terrain obtained from the algorithm above.

V. RESULT

On feeding the obtained values from the above algorithm
in one of our terrain rendering function with displacement
value set at 50.0 and roughness 0.55 we obtained the
following output as in Figure 2:

 Fig. 2 Output for displacement = 50 and roughness = 0.55.

The algorithm takes time of O(lg(N)), where N is the

size of terrain_array. This is a very big improvement in
comparison to the sequential algorithm which has linear
time complexity.

VI. CONCLUSION

The 1D midpoint displacement algorithm has been
successfully implemented in parallel and the time
consumed for terrain generation has been reduced
drastically by using NVidia GPU and CUDA API.
Different terrains can be generated by changing the value
of displacement and roughness parameter in the algorithm.
For generating terrains that are more detailed, we must use
the terrain_array of larger size. Also, the best performance
of this algorithm will be when the size of terrain_array is
of the form 2N + 1 because there won’t be any kind of
memory collision.

Yadav Mayank Subhash et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 942-944

www.ijcsit.com 943

VII. FUTURE WORK
The parallel 1D midpoint displacement algorithm for

terrain generation can be extended to 2D and 3D midpoint
displacement algorithm as well.

ACKNOWLEDGMENT

We are thankful for the guidance and support of our
mentor Dr. P.S. Rao, Assistant Professor, Department of
Applied Mathematics.

REFERENCES
[1] J. Jilesen et al., Three-dimensional midpoint displacement algorithm

for the generation of fractal porous media, Journal Computers &
Geosciences. Tarrytown, NY, US: September 2012, vol. 46.

[2] Jason Sanders and Edward Kandrot, “CUDA by Example”, Addison-
Wesley, 2012.

Yadav Mayank Subhash et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 942-944

www.ijcsit.com 944

